

Краткое руководство Привод VLT® Micro

1 Краткое руководство

1.1 Техника безопасности

1.1.1 Предупреждения

▲ВНИМАНИЕ!

ВЫСОКОЕ НАПРЯЖЕНИЕ!

В подключенных к сети переменного тока преобразователях частоты имеется опасное напряжение. Установка, запуск и обслуживание должны осуществляться только компетентным персоналом. Несоблюдение этого требования может привести к летальному исходу или получению серьезных травм.

Высокое напряжение

Частотные преобразователи подключены к опасному сетевому напряжению. Необходимо соблюдать повышенную осторожность для защиты от электрошока. Монтаж, запуск или обслуживание данного оборудования должны выполнять только должным образом подготовленные специалисты, компетентные в сфере электронного оборудования.

Прикосновение к токоведущим частям может привести к смертельному исходу - даже если оборудование отключено от сети. Убедитесь также, что отключены другие источники напряжения (подключение промежуточной цепи постоянного тока). Имейте в виду, что высокое напряжение в цепи постоянного тока может сохраняться, даже если светодиоды погасли. Прежде чем прикасаться к потенциально опасным токоведущим частям приводов типоразмеров М1, М2 и М3, подождите не менее 4 минут. Подождите не менее 15 минут, прежде чем начать работу с типоразмерами М4 и М5.

▲ВНИМАНИЕ!

НЕПРЕДНАМЕРЕННЫЙ ПУСК!

Если преобразователь частоты подключен к сети питания переменного тока, двигатель может включиться в любое время. Преобразователь частоты, двигатель и любое подключенное оборудование должны быть в состоянии готовности. Неготовность к работе при подключении преобразователя частоты к сети питания переменного тока может привести к летальному исходу, получению серьезных травм или к повреждению оборудования.

Непреднамеренный пуск

Если преобразователь частоты подключен к сети переменного тока, двигатель можно запустить с помощью внешнего переключателя, команды по шине последовательной связи, с использованием входного сигнала задания либо после устранения неисправности.

Предпринимайте все необходимые меры для защиты от непреднамеренного пуска.

Ток утечки (>3,5 мА)

Соблюдайте национальные и местные нормативы, относящиеся к защитному заземлению оборудования с током утечки > 3,5 мА. Технология Преобразователь частоты предполагает высокочастотное переключение при высокой мощности. При этом генерируются токи утечки через заземление. Ток при отказе преобразователь частоты, возникающий на выходных силовых клеммах, может содержать компонент постоянного тока, который может приводить к зарядке конденсаторов фильтра и к образованию переходных токов заземления. Ток утечки на землю зависит от различных конфигураций системы, включая использование фильтров ВЧ-помех, экранированных кабелей двигателя, а также от мощности преобразователь частоты.

В соответствии со стандартом EN/IEC61800-5-1 (стандарт по системам силового привода) следует соблюдать особую осторожность в том случае, если ток утечки превышает 3,5 мА. Заземление следует усилить одним из следующих способов.

- Сечение провода заземления должно быть не менее 10 мм².
- Следует использовать два отдельных провода заземления соответствующих сечений.

Дополнительную информацию см. в стандарте EN 60364-5-54 § 543.7

Использование RCD.

Если используются датчики остаточного тока (RCD), также известные как автоматические выключатели для защиты от утечек на землю (ELCB), соблюдайте следующие требования.

Используйте только RCD типа B, которые могут обнаруживать переменные и постоянные токи.

Используйте RCD с задержкой по пусковым токам, чтобы предотвратить отказы в связи с переходными токами на землю.

Размеры RCD следует подбирать с учетом конфигурации системы и условий окружающей среды.

Тепловая защита двигателя

Защита двигателя от перегрузок возможна путем установки параметра 1-90 Тепловая защита двигателя в значение отключения по ЭТР. Для Северной Америки: Встроенное ЭТР обеспечивает защиту двигателя класса 20 от перегрузок согласно нормам NEC.

Монтаж на больших высотах над уровнем моря

Если высота над уровнем моря превышает 2 км, обратитесь в Danfoss относительно требований PELV.

1.1.2 Инструкции по технике безопасности

- Убедитесь, что преобразователь частоты надлежащим образом заземлен.
- Не отсоединяйте разъемы сетевого питания, двигателя и не разъединяйте другие силовые цепи, пока преобразователь частоты подключен к источнику питания.
- Защитите пользователей от напряжения электропитания.
- Защитите двигатель от перегрузки в соответствии с требованиями государственных и местных норм и правил.
- Ток утечки на землю превышает 3,5 мА.
- Кнопка [OFF] не выполняет функции защитного переключателя. Она не отключает преобразователь частоты от сети.

1.2 Введение

1.2.1 Список литературы

ПРИМЕЧАНИЕ

Настоящее краткое руководство содержит основные сведения, необходимые для монтажа и эксплуатации преобразователя частоты.

Для получения дополнительной информации можно загрузить указанные ниже документы с сайта: http://www.danfoss.com/BusinessAreas/DrivesSolutions/ Documentations

Название	Nº
	документа
Инструкция по эксплуатации VLT Micro Drive FC 51	MG.02.AX.YY
Краткое руководство по VLT Micro Drive FC 51	MG.02.BX.YY
Руководство по программированию VLT Micro Drive FC 51	MG.02.CX.YY
Инструкция по монтажу FC 51 LCP	MI.02.AX.YY
Инструкция по монтажу развязывающей панели FC 51	MI.02.BX.YY
Инструкция по монтажу выносного монтажного комплекта FC 51	MI.02.CX.YY
Инструкция по монтажу комплекта DIN-рейки FC 51	MI.02.DX.YY
Инструкция по монтажу комплекта FC 51 IP21	MI.02.EX.YY
Инструкция по монтажу комплекта FC 51 Nema1	MI.02.FX.YY

Х = Номер редакции, Y = Код языка

1.2.2 Разрешения

1.2.3 Сеть ИТ

ПРИМЕЧАНИЕ

Сеть ИТ

Монтаж на изолированной сети электропитания, т. е. сети ИТ.

Макс. напряжение питания, допустимое при подключении к сети: 440 В.

Для уменьшения нелинейных искажений Danfoss предлагает использовать дополнительные сетевые фильтры.

1.2.4 Избегайте непреднамеренного пуска

Если преобразователь частоты подключен к сети, двигатель можно запустить/остановить с помощью цифровых команд, команд с шины, заданий или с LCP.

- Отсоедините преобразователь частоты от сети, если для обеспечения безопасности персонала требуется защита от непреднамеренного пуска каких-либо двигателей.
- Чтобы избежать непреднамеренного пуска, перед изменением параметров обязательно нажмите кнопку [OFF] (Выкл.).

1.2.5 Указания по утилизации

Оборудование, содержащее электрические компоненты, запрещается утилизировать вместе с бытовыми отходами. Такое оборудование вместе с электрическими и электронными компонентами следует утилизировать в соответствии с действующими местными нормами и правилами.

1.3 Монтаж

1.3.1 Перед началом ремонтных работ

- 1. Отключите FC 51 от сети питания (и от внешнего источника постоянного тока, если он имеется).
- 2. Подождите 4 минуты (M1, M2 и M3) и 15 минут (M4 и M5) для разряда цепи постоянного тока.
- 3. Отсоедините клеммы шины постоянного тока и клеммы тормозного резистора (если таковые имеются).
- 4. Отсоедините кабель электродвигателя.

1.3.2 Монтаж рядом вплотную

Для блоков со степенью защиты IP 20 преобразователи частоты можно устанавливать «бок-о-бок». Для охлаждения требуется свободное пространство 100 мм над корпусом и под ним. Подробнее о требованиях к окружающей среде для преобразователя частоты см. в технических характеристиках, приведенных в конце настоящего документа.

1.3.3 Габаритные размеры

Шаблон для сверления отверстий можно найти на клапане упаковки.

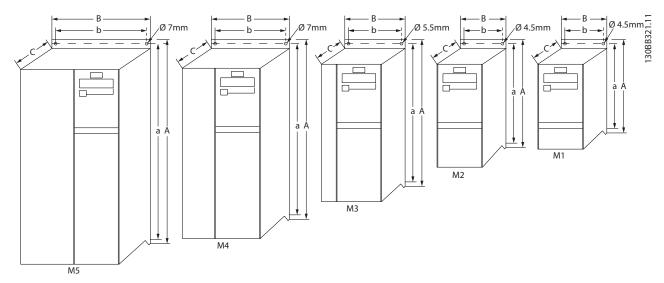


Рисунок 1.1 Габаритные размеры.

	Мощность (кВт)				Высота (мм)				Глубина ¹⁾ (мм)	Макс. вес	
Типор азмер	1 x 200–240 B	3 x 200–240 B	3 x 380–480 B	A	A (с развязывающей панелью)	a	В	b	С	Кг	
M1	0,18-0,75	0,25-0,75	0,37-0,75	150	205	140,4	70	55	148	1,1	
M2	1,5	1,5	1,5-2,2	176	230	166,4	75	59	168	1,6	
М3	2,2	2,2-3,7	3,0-7,5	239	294	226	90	69	194	3,0	
M4			11.0-15.0	292	347,5	272,4	125	97	241	6,0	
M5			18.5-22.0	335	387,5	315	165	140	248	9,5	

Таблица 1.1 Габаритные размеры

1.3.4 Общие сведения по электромонтажу

ПРИМЕЧАНИЕ

Вся система кабелей должна соответствовать государственным и местным нормам и правилам в отношении сечения и температуры окружающей среды. Рекомендуется использовать медные проводники (60–75 °C).

	Мощность (кВт)				Крутящий момент (Нм)						
Типораз мер	1 x 200–240 B	3 x 200–240 B	3 x 380–480 B	Сеть	Двигател ь	Подключение постоянного тока / торможение	Клеммы управления	Земля	Реле		
M1	0,18-0,75	0,25-0,75	0,37-0,75	1,4	0,7	Наконечник ¹⁾	0,15	3	0,5		
M2	1,5	1,5	1,5-2,2	1,4	0,7	Наконечник ¹⁾	0,15	3	0,5		
М3	2,2	2,2-3,7	3,0-7,5	1,4	0,7	Наконечник ¹⁾	0,15	3	0,5		
M4			11.0-15.0	1,3	1,3	1,3	0,15	3	0,5		
M5			18.5-22.0	1,3	1,3	1,3	0,15	3	0,5		
1) Провода с наконечниками (разъемы 6.3 мм фирмы Faston)											

Таблица 1.2 Затягивание на клеммах

1.3.5 Плавкие предохранители

Защита параллельных цепей:

Чтобы защитить установку от перегрузки по току и пожара, все параллельные цепи в установке, коммутационные устройства, механизмы и т.д. должны иметь защиту от короткого замыкания и перегрузки по току в соответствии с государственными/международными правилами.

Защита от короткого замыкания:

Danfoss Для защиты персонала и оборудования в случае внутренней неисправности в блоке или короткого замыкания в цепи постоянного тока, рекомендует применять предохранители, указанные в приведенных ниже таблицах. Преобразователь частоты обеспечивает полную защиту от короткого замыкания в двигателе или на выходе торможения.

Обеспечьте защиту от перегрузки для предотвращения перегрева кабелей в установке. Защита от перегрузки по току должна выполняться в соответствии с государственными нормами и правилами. Плавкие предохранители должны быть рассчитаны на защиту в цепях, допускающих максимальный ток 100000 A_{ср. кв.} (симметричная схема), максимальное напряжение 480 В.

Без соответствия техническим условиям UL:

Если требования UL/cUL не являются обязательными, Danfoss рекомендует применять предохранители, указанные в таблице ниже, что обеспечит соответствие требованиям стандарта EN50178/IEC61800-5-1: Несоблюдение приведенных рекомендаций может в случае неисправности привести к чрезмерному повреждению преобразователя частоты.

Защита от перегрузки по току:

FC 51	Bussmann	Bussmann	Bussmann	Предохранитель Littel	Ferraz- Shawmut	Ferraz- Shawmut	Макс. ток предохр. без соотв. UL	
1 x 200-240	В							
кВт	Тип RK1	Тип J	Тип Т	Тип RK1	Тип СС	Тип RK1	Тип gG	
0K18-0K37	KTN-R15	JKS-15	JJN-15	KLN-R15	ATM-R15	A2K-15R	16A	
0K75	KTN-R25	JKS-25	JJN-25	KLN-R25	ATM-R25	A2K-25R	25A	
1K5	KTN-R35	JKS-35	JJN-35	KLN-R35	-	A2K-35R	35A	
2K2	KTN-R50	JKS-50	JJN-50	KLN-R50	-	A2K-50R	50A	
3 x 200-240	В							
0K25	KTN-R10	JKS-10	JJN-10	KLN-R10	ATM-R10	A2K-10R	10A	
0K37	KTN-R15	JKS-15	JJN-15	KLN-R15	ATM-R15	A2K-15R	16A	
0K75	KTN-R20	JKS-20	JJN-20	KLN-R20	ATM-R20	A2K-20R	20A	
1K5	KTN-R25	JKS-25	JJN-25	KLN-R25	ATM-R25	A2K-25R	25A	
2K2	KTN-R40	JKS-40	JJN-40	KLN-R40	ATM-R40	A2K-40R	40A	
3K7	KTN-R40	JKS-40	JJN-40	KLN-R40	-	A2K-40R	40A	
3 x 380-480	В							
0K37-0K75	KTS-R10	JKS-10	JJS-10	KLS-R10	ATM-R10	A6K-10R	10A	
1K5	KTS-R15	JKS-15	JJS-15	KLS-R15	ATM-R15	A2K-15R	16A	
2K2	KTS-R20	JKS-20	JJS-20	KLS-R20	ATM-R20	A6K-20R	20A	
3K0	KTS-R40	JKS-40	JJS-40	KLS-R40	ATM-R40	A6K405R	40A	
4K0	KTS-R40	JKS-40	JJS-40	KLS-R40	ATM-R40	A6K-40R	40A	
5K5	KTS-R40	JKS-40	JJS-40	KLS-R40	-	A6K-40R	40A	
7K5	KTS-R40	JKS-40	JJS-40	KLS-R40	-	A6K-40R	40A	
11K0	KTS-R60	JKS-60	JJS-60	KLS-R60	-	A6K-60R	63A	
15K0	KTS-R60	JKS-60	JJS-60	KLS-R60	-	A6K-60R	63A	
18K5	KTS-R60	JKS-60	JJS-60	KLS-R60	-	A6K-60R	80A	
22K0	KTS-R60	JKS-60	JJS-60	KLS-R60	-	A6K-60R	80A	

Таблица 1.3 Плавкие предохранители

1.3.6 Подключение к сети и к двигателю

Преобразователь частоты предназначен для работы со всеми стандартными трехфазными асинхронными двигателями.

К преобразователю частоты можно подключать кабели сети/двигателя с максимальным сечением 4 мм 2 /10 AWG (М1, М2 и М3) и максимальным сечением 16 мм 2 /6 AWG (М4 и М5).

- Чтобы обеспечить соответствие требованиям ЭМС по излучению, используйте для подключения двигателя экранированный/ защищенный кабель, причем соедините его и с развязывающей панелью, и с металлическим корпусом двигателя.
- Для снижения уровня помех и токов утечки кабель двигателя должен быть как можно короче.
- Подробное описание монтажа развязывающей панели приведено в инструкции MI.02.BX.YY.
- Также см. «Монтаж с учетом требований по ЭМС» в инструкции по эксплуатации MG. 02.AX.YY.

Операция 1: Прежде всего, подключите провода заземления к клемме заземления.

Операция 2: Подключите двигатель к клеммам U, V и W.

Операция 3: Подключите к сети клеммы L1/L, L2 и L3/N (трехфазная схема) или L1/L и L3/N (однофазная схема) и затяните.

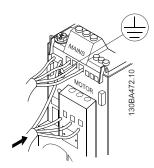


Рисунок 1.2 Подключение заземляющего кабеля и проводов двигателя

1.3.7 Клеммы управления

Все клеммы для подсоединения кабелей управления размещаются под клеммной крышкой на передней стороне преобразователя частоты. Снимите клеммную крышку с помощью отвертки.

ПРИМЕЧАНИЕ

Сверяйтесь со схемами клемм управления и переключателей, приведенными на задней стороне клеммной крышки.

ПРИМЕЧАНИЕ

Не манипулируйте переключателями, если на преобразователь частоты подано питание. Параметр 6-19 должен быть установлен в соответствии с положением переключателя 4.

Рисунок 1.3 Снятие клеммной крышки

Переключатель	*OFF (выкл.) = PNP-клеммы 29			
1:	ON (вкл.) = NPN-клеммы 29			
Переключатель	*OFF (выкл.) = PNP-клеммы 18, 19, 27 и 33			
2:	ON (вкл.) = NPN-клеммы 18, 19, 27 и 33			
Переключатель	Нет функции			
3:				
Переключатель	*OFF (Выкл.) = клемма 53, 0–10 В			
4:	ON (Вкл.) = клемма 53, 0/4-20 мА			
* — VCT3HORKS DO VMODUSHINO				

Таблица 1.4 Установка переключателей S200, 1-4

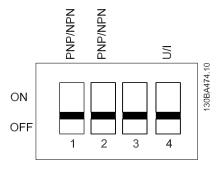


Рисунок 1.4 Переключатели S200, 1-4

Все клеммы управления преобразователя частоты показаны на *Рисунок 1.5.* Для работы преобразователя частоты необходимо подать сигнал пуска (клемма 18) и аналоговое задание (клемма 53 или 60).

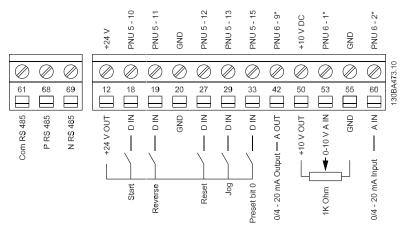


Рисунок 1.5 Описание клемм управления в конфигурации PNP и при заводских установках параметров

1.3.8 Краткое описание силовой цепи

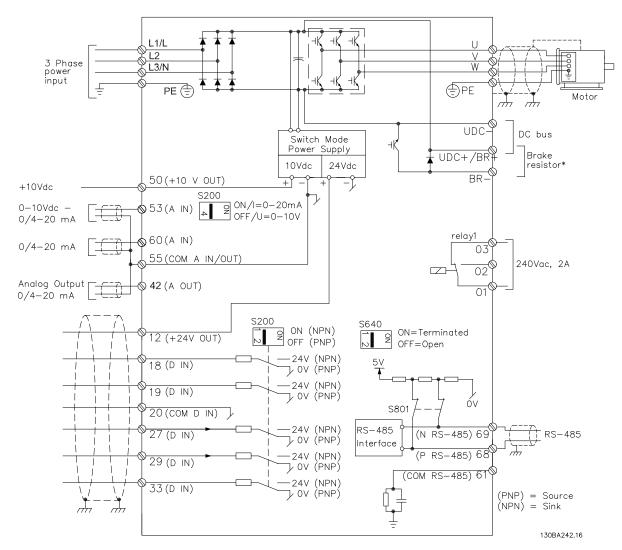


Рисунок 1.6 Схема электрических соединений всех клемм

* Для типоразмера М1 тормоз (BR+ и BR-) не предусмотрен.

Тормозные резисторы можно заказать в Danfoss. Увеличение коэффициента мощности и улучшение характеристик ЭМС может быть достигнуто путем установки дополнительных Danfoss сетевых фильтров. Danfoss Фильтр мощности может также использоваться для распределения нагрузки.

1.3.9 Распределение нагрузки/тормозное устройство

Для постоянного тока пользуйтесь изолированными разъемами Faston 6,3 мм для высокого напряжения (Распределение нагрузки и тормозное устройство).

За дополнительной информацией по распределению нагрузки и тормозным устройствам обращайтесь в Danfoss или к инструкциям MI.50.Nx.02 и MI.90.Fx.02 соответственно.

Распределение нагрузки: соедините клеммы -UDC и +UDC/+BR.

Тормоз: Соедините клеммы -BR и +UDC/+BR (не доступно для типоразмера M1).

ПРИМЕЧАНИЕ

Между клеммами могут возникать напряжения до 850 В пост. тока

+UDC/+BR и -UDC. Нет защиты от короткого замыкания.

1.4 Программирование

1.4.1 Программирование с помощью LCP

Подробнее о программировании см. в Руководстве по программированию, МG.02.СХ.ҮҮ.

С помощью программы настройки МСТ-10 преобразователь частоты также может быть запрограммирован с ПК через коммуникационный порт RS485.

Используйте код 130В1000 для заказа программы или загрузите ее с веб-узла компании Danfoss: www.danfoss.com/ BusinessAreas/DrivesSolutions/softwaredownload

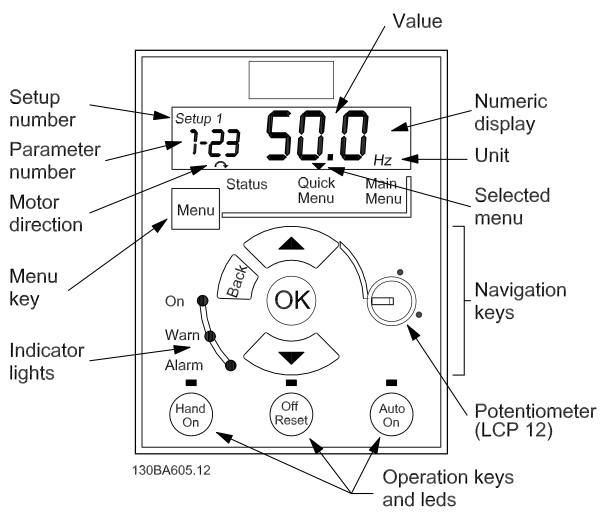


Рисунок 1.7 Описание кнопок и дисплея LCP